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The aspartic protease of human immunodeficiency virus type 1
(HIVpr) possesses a pair of flaps which are postulated to open in
the early stages of its catalytic mechanism (Figure 1). Here, we
study the effect of high macromolecular concentrations, or crowded
conditions, on the internal dynamics of HIVpr. Compared to low
concentrations, high concentrations of repulsive crowding agents
are found to significantly reduce the fraction of time that the
protease flaps are open. Since flap dynamics are likely to have a
major effect on in vivo enzyme activity, macromolecular crowding
may play an important regulatory role in the viral life cycle. \

Macromolecular crowding has been seen to affect the equilibria
and rates of many molecular processes, including diffusion, Figurde 1 |':|VPT in CtltéSO/Ed and Otpetr_l COSfOFW:atiOHS_ILr:n Ithe p_re;en:?eﬂOf
association and dissociatiérand protein folding and stability! firpO\(IjvisSarnT:seg?Se.SZaA (Ie(}t;:%?\%eglrzlc))l\n(riér\:g.ume' € lines indicate fap
These effects can be qualitatively studied through polymer chain
models with the understanding that nonspecific interactions
between macromolecules reduce the available volume of a particle
in solution? Using a mean-field approximation, macromolecular
crowding can be modeled by confinemérhe qualitative effects
are assumed to be the same.

Computer simulations can add realism to the theory of macro- Test
molecular crowdind.Crowding effects on the free energy of protein Particle
escape from a chaperonin cage have been studied using Brownian Crowder

dynamics simulationgCoarse-grained molecular dynamics simula-  Figure 2. Schematic of crowder potential.
tions have been used to study crowding effects on the protein native-
state stability and folding kineticsHere, we report the first, to
our knowledge, simulation of crowding effects on internal protein
dynamics.

We study HIVpr, an essential viral enzyme that is the target of
many antiretroviral drugs. HIVpr is a homodimer which possesses
a pair of 5-hairpin flaps, one from each monomer, that covers the
enzyme active site in most extant crystal structures. The opening

and closing of the flaps is thought to be involved in substrate/ . . . .
9 P g realistic model for amino acids on the surface of a globular protein

inhibitor binding and the enzymatic mechanism. han a single repulsiv here. we mimic this effect b ing th
Nuclear magnetic resonance measurements indicate that the flap:% an a singie repuisive sphere, we ¢ this efiect by using the

are very mobilé?® Flap motions have been studied by atomistically do.llotvr\]lsg.pt(:'?:(;l?)leftorecgr(])wdz?:deff.= tge_régc.‘”d ;fczchwg)(’:rv(\)lh?jr'i
detailed molecular dynamics (MD) simulatidhsnd accelerated IS IS W SPECIRGa IS Ius waing

MD?2 simulations. Our coarse-grained model has shown bunchesag.ent (chosen to be 30 A, which is slightly larger than the longest

of opening and closing events on the nanosecond time sca\IeaX'S.Of HIVpr), andoeuis th? radius of th_e crov_vdmg agent surface
o particle (7 A, the average size of an amino acid bead in our coarse-
separated by longer closing tim®s.

Starting with coordinates from protein data bank entry THHP grained model). This model effectively places a surface particle

we treat amino acid interactions by a statistically parametrized directly between a crowding agent and its interaction partner

coarse-grained potential in which each amino acid residue is (Figure 2). . . -
One HIVpr molecule is placed in the center of a periodic cube

T Department of Chemistry and Biochemistry, Center for Theoretical With a side length of 170 A. Simulations are run at three crowder

represented by a single bekdCrowding agents are modeled as
spheres which interact with each other and with amino acids by
the pairwise potentiaE = e(0jj/der)'?, Whereo; = (0i + 0j), the
van der Waals radii of the respective speciess 0.6 kcal/mol,
anddet is the effective distance between them.

Crowding agents have been modeled as “spheres of spheres”
the surface of a large sphere, covered with many evenly spaced
smaller sphereAs we consider “spheres of spheres” to be a more
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Warsaw Univeraty. with particles in solution. For 71% crowding, a face-centered cubic
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. No crowders 68% crowders The effect of macromolecular crowding on HIVpr flap dynamics,
40 40 and thereby enzymatic activity, is a potentially important regulatory
mechanism. The function of HIVpr in the viral life cycle is to cleave
20 the Gag and Gag-pol polyproteifsand wild-type HIVpr is also

subject to autoproteolysis. Premature cleavage of polyprotein
products in the cellular cytoplasm may preclude subcellular

10 20 00 10 20 qualization of viral spe(;ies necessary for budding. In the buinng
virion, however, crowding effects should be offset by the high
concentration of substrate species among the surrounding mol-
eculest®
. . _ ) We hope that our study will inspire experimental work along
molecule were removed. Brownian dynamics simulations at 300.0 the same vein and anticipate that our methods will be applied to
K were performed using a modified version of UHBDwith a other systems to help elucidate the role of crowding in many
time step of 0.05 ps. Diffusion coefficients were assigned to processes.
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coefficient. In a first-order decay proceS§§At) = e KA, whereAt References
i i i i ili i 1) (a) Maramatsu, N.; Minton, A. FProc. Natl. Acad. Sci. U.S.A988 85,
Is the elaps_ec_i time(AL) is t.he SurVIVal. PrObablhty’ an.ﬁ Is the @ 59)&%2988. (b) Weiss, M.; Elsner, M.; Kartberg, F.; NilssonBiophys.
decay coefficient. The survival probability can be estimated from J. 2004 87, 3518-3524.

fl ip distan rai ri nstructin hi ram of n (2) Miyoshi, D.; Matsumura, S.; Nakano, S.; Sugimoto,JNAm. Chem. Soc.
ap tip distance trajectories by constructing a histogram of ope 2004 136 165160,

o

Flap tip distance (A)
N
(]

o

Time (microseconds)
Figure 3. Representative plots of flap tip distance versus simulation time.
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